

THE REPUBLIC OF UGANDA

AND PRACTICES

IN-SERVICE TRAINING CURRICULUM FOR LABORATORY PERSONNEL

MICROBIOLOGY TECHNIQUES AND PRACTICES

IN SERVICE TRAINING CURRICULUM

FOR

LABORATORY PERSONNEL

June, 2019

Copyright

Ministry of Health, Uganda, 2019

Ministry of Agriculture, Animal Industry and Fisheries

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopy, recording or otherwise without the prior written permission of the publisher.

Website: <u>www.health.go.ug</u>

www.agriculture.go.ug

First Edition

Contents

Foreword	1	iii	
Acknowl	ledgeme	ntsiv	
List of A	cronym	sv	
1. Introd	uction		
1.1.	Backgro	ound	6
1.2.	Justifica	ation	6
1.3.	Philoso	phy	7
1.4.	Program	n overview	7
1.4.1	l. Pro	ogram Title	7
1.4.2	2. Co	urse Description	7
1.5.	Job Pro	file for Laboratory Professionals	9
1.5.1	I. Job	Tasks and Duties)
1.5.2	2. En	ployment areas for the successful participant12	2
1.6.	Trainin	g Modules, Durations and Target Group	12
1.7.	Curricu	lum development process	12
1.8.	Trainin	g approach	13
1.9.	Program	nme Delivery	13
2. Progra	amme co	ontent	
2.1.	Course	01: Basic Microbiology Laboratory Techniques and Practices	15
2.2. mycolog	Course y	02: Advanced Microbiology Laboratory Techniques in bacteriology and	22
2.3. and Imm	Module unology	03: Advanced Microbiology laboratory techniques in Molecular biology	′ 26

Foreword

Modern medicine has led to dramatic changes in the management of infectious diseases. However, the emergence of Anti-microbial resistance (AMR) exacerbated by constrained resources now threatens our ability to adequately manage life threatening infectious diseases. Microbiology laboratories play a critical role in the detection of new antibiotic resistance, outbreaks of foodborne infection, and possible bioterrorism events. Providing high-quality microbiology laboratory services that meet national and international standard is critical in the appropriate management of infectious diseases and antimicrobial resistance, thereby improving treatment outcomes.

Uganda's One Health Strategic Plan (2018-2022) recognizes that the health of humans, animals and the environment is interlinked and provides a framework for promoting multisectoral collaboration to effectively prevent and control emerging and re-emerging infectious diseases and AMR, especially in resource-limited settings like Uganda.

This in-service training curriculum endeavours to improve capacity and strengthen competencies demanded in microbiology laboratory practice. It will facilitate effective inservice training and follow up (integrated in a mentorship and supportive supervision system) to support trainees apply acquired competencies. The modular approaches are also adopted to help trainees master the competencies and progress at a pace, which motivates and facilitates further inquisitive learning.

It is our sincere hope that this curriculum will contribute to improvement of skills, highly motivate and ensure competent laboratory personnel that will promote a healthy and productive nation.

We commend the team that participated in the development of this curriculum, urge and pledge to work closely with other line ministries, government departments and stakeholders involved in improving clinical microbiology practices to support the implementation to provide the support necessary for the implementation of this course.

Dr. Henry Mwebesa Ag. Director General Health Services, Ministry of Health Dr. Juliet Sentumbwe Director of Animal Resources Ministry of Agriculture, Animal Industry & Fisheries

Acknowledgements

The development of this curriculum involved many stakeholders from within the Human and Animal health sector. It drew microbiology expertise from Ministries of Health and MAAIF, Ministry of water and environment, various institutions, departments and hospitals. Sincere gratitude is extended to officials from National Curriculum Development Centre (NCDC) for their guidance in development of this document.

On behalf of the Government of Uganda, we acknowledge the invaluable financial support provided by the Centers for Disease Control and Prevention (CDC) and the UK Fleming Fund for funding the development and review of the curriculum.

We are grateful for the invaluable technical input from the following experts and their organisations:

Dr. Susan Nabadda, CPHL/UNHLS	Mr. Willy Nguma, Arua Regional Veterinary		
	Laboratory		
Mr. Atek Kagirita, CPHL/UNHLS	Mr. Gerald Aluma, IDI		
Mr. Guma Gaspard, CPHL/UNHLS	Mr. Charles Isabirye, Uganda Cancer Institute		
Mrs. Kamaranzi Bakunda, CPHL/UNHLS	Mr. Ben Asutaku Butti, Mulago Hospital		
Dr. Najjuka Grace, CPHL/UNHLS	Mr. Patrick Orikiriza, EPI-Centre Mbarara		
Mr. Pimundu Godfrey, CPHL,UNHLS	Mr. Buga Rudolf, School of Public Health		
Dr. Simon Kalyesubula, EAPHLNP	Mr. Charles Munafu, CPHL/UNHLS		
Ms. Atuhaire D. Winifred, CPHL/UNHLS	Ms. Christine Korsah, NTRL		
Mr. Richard Walwema, IDI	Dr. Ndumu Deo, NADDEC		
Mr. Andrew Baguma, IDI/CPHL	Ms. Nanfuka Mary, NADDEC		
Mr. Morgan Otita, IDI	Mr. Kata Kassim, IDI		
Mr. Rogers Kisame, IDI	Mr. Arinaitwe Walter, IDI		
Mr. Hannington Baluku, Department of Medical	Mr. Duku Chaplain, NRH Mulago, Microbiology		
Microbiology MUK	Department		
Ms. Irene Tumwine, MoH/NCDC	Mr. Sam Lubwama, St. Francis Nsambya Hospital		
Ms. Sophia Kasuswa, Jinja RRH	Mr. Paul Okello, JCRC		
Mr. Nathan Lubowa Musisi, COVAB, MU	Mr Bernard Janja, NCDC		
Mr. Wewedru Izale, Mulago NRH	Ms. Phionah Katami, IDI		
Dr. Beatrace Achan. Mak CHS	Mr. Dickson Tabajjwa, IDI		
Ms. Consulta Guma, CPHL/UNHLS	Ms. Peninah Nalukenge, CPHL/UNHLS		
Mr. Bernard Wanjala, IDI	Mr. Bernard Janja, NCDC		
Mr. Mugerwa Ibrahim, NHLDS	Ms. Zubeda Bojo, NHLDS		
Ms. Consolata Guma, NHLDS	Mr. Simon Dembe Kasango		

We would also like to acknowledge valuable reviews and feedback received from the National AMR Surveillance Technical Working Committee.

List of Acronyms

AMR	Antimicrobial Resistance
AST	Antimicrobial Susceptibility Testing
CDC	Centers for Disease Control
CPHL	Central Public Health Laboratories
CSF	Cerebral Spinal Fluid
EQA	External Quality Assessment
GCLP	Good Clinical laboratory Practices
GHSP	Global Health Security Project
GIT	Gastrointestinal Tract
GLASS	Global Antimicrobial Resistance Surveillance System
HMIS	Health Management Information System
ID	Identification
IDI	Infectious Disease Institute
IDSR	Integrated Disease Surveillance Response
IHR	International Health Regulation
IPC	Infection Prevention and Control
ISO	International Organisation for Standardization
LCD	Liquid crystal display
LCH	Lecture Hours
LQMS	Laboratory Quality Management System
MICRO	Microbiology
MoH	Ministry of Health
NADDEC	National Animal Disease Diagnostics and Epidemiology Centre
NCDC	National Curriculum Development Centre
РСН	Practical Hours
PCR	Polymerase Chain Reaction
POC	Point of Care
QA	Quality Assurance
QC	Quality Control
QMS	Quality Management System
RT	Real Time
SOPs	Standard Operating Procedures
TNA	Training Needs Assessment
UNHLS	Uganda National Health
USAID	United States Agency for International Development
WHO	World Health Organisation
CMTP	Certificate of Competency in Microbiology Techniques and Practices
ZN	Ziehl Neelsen

1. Introduction

1.1. Background

Microbiology is the field of science, concerned with the diagnosis of human diseases

caused by bacteria, viruses, fungi, and parasites, as well as antimicrobial susceptibility testing, infection control, public health (surveillance and outbreak response), and laboratory quality, safety, management, and regulation. Microbiology laboratory practices and procedures consists primarily of three major spheres of activity:

- Technical direction of a microbiology laboratory services and provision of clinical consultations;
- Sample collection, handling and transporation; and
- Identification, characterization and reporting of investigations of micro-organisms causing infectious diseases;

The training of Microbiology Laboratory Personnel in Uganda started in 1929 by Dr. Turton, a Bacteriologist, employed by the British Government (in-service). In 1965, Britain changed the training system from a hospital broad-based and skill-oriented to specialized institution-based and mainly academic-oriented training (Pre-service). Laboratory training institutions have been following this mode of delivery which largely provides knowledge but limited in skills and competence building. However, the market requires that the laboratory personnel competently perform microbiology techniques and practices. In the recent past, In-service microbiology trainings have been conducted by various institutions without a standardized curriculum. Establishment and roll out of a standardized competence based in-service training curriculum is one of the strategies to strengthening microbiology laboratory skills and competencies required to support patient care, AMR surveillance, disease surveillance, outbreak investigation, preparedness and response.

1.2. Justification

Microbiology laboratories play a vital role in the detection, monitoring, outbreak investigation and the provision of scientific evidence to prevent and control infectious diseases (Public Health System). As the microbiology network grows, there is an increasing demand for practical skills training and this calls for development of an in-service practical microbiology curriculum to streamline the capacity building of the laboratory science practitioners. The in-service training will represent a significant investment for continued competence building of the microbiology laboratory workforce.

1.3. Philosophy

This in-service training curriculum adopts a five staged accelerated Learning Cycle¹ as described in figure 1 and table 1 below, to increase learning success. This framework offers a structured approach that recognizes the natural stages of learning.

Figure 1: Accelerated learning cycle

Source: Adopted accelerated Learning Cycle- International Alliance for Leaning

1.4. Program overview

1.4.1. Program Title

Certificate of Competency in Microbiology Techniques and Practices (CMTP).

1.4.2. Course Description

Aim

The main aim of the program is to build and strengthen the capacity of laboratory personnel to competently provide efficient and effective Microbiology testing services to improve quality of health care services.

Objectives

This program is intended to equip trainees with on job skills to:

¹ Accelerated Learning Cycle accessed at: <u>http://iaalp.org/cycle</u> on 15th Aug 2018

- 1. Perform Microbiology investigations correctly according to the recommended standard.
- 2. Manage microbiology laboratory resources and services effectively and efficiently.
- Manage microbiology laboratory infection prevention and control to promote Biosafety.
- 4. Conduct microbiology Quality Assurance and control
- 5. Conduct Disease Surveillance and response.
- 6. Document and disseminate microbiology information.
- 7. Package, store and refer microbial isolates for further testing.

1.5. Job Profile for Laboratory Professionals **1.5.1**. Job Tasks and Duties

JOB **DUTIES / TASKS** Oversee laboratory services Analyse samples for abnormalities Design and conduct research Assign tasks to subordinates Perform Administrative Tasks Provide Continuous Professional Development Perform routine and advanced laboratory tests Process specimens for testing Interpret laboratory results Maintain and operate standard laboratory equipment Guide the patients and clinical staff on specimen collection Archiving and Storage of specimen Conduct research Ensure the laboratory is well-stocked and resourced Design and maintain quality assurance system Assign tasks to subordinates Observe health and safety precautions Maintain Health Information Management System Perform Routine Parasitological, Haematological, Chemistry, Microbiological and immunological tests. Provide Continuous Professional Development Laboratory data management Monitoring trends. Collect specimens from animals for laboratory examination and analysis.

JOB	DUTIES / TASKS
	Operate diagnostic equipment and interpret the resulting
	images.
	Design and conduct laboratory procedure to support research
	Oversee laboratory services
	Observe biosafety and biosecurity to prevent the spread of
	diseases
	Perform laboratory tests in order to produce reliable and
	precise data
	Processing specimens for testing
	Maintain and operate standard laboratory equipment
	Ensure the laboratory is well-stocked and resourced
	Process specimens for testing
	Interpret laboratory results
	Guide the patients and clinical staff on specimen collection
	Archiving and Storage of specimen
	Assign tasks to subordinates
	Laboratory data management
	Monitoring trends.
	Observe health and safety precautions
	Maintain Health Information Management System
	Perform Routine Parasitological, Haematological, Chemistry,
	Microbiological and immunological tests
	Perform Administrative Tasks
	Provide Continuous Professional Development
	Laboratory data management
	Guide the patients and clinical staff on specimen collection
	Archiving and Storage of specimen
	Perform laboratory tests in order to produce reliable and
	precise data

JOB	DUTIES / TASKS
Medical Laboratory	Prepare specimens and samples
Technician and	Maintain and operate standard laboratory equipment
Assistant	Prepare Laboratory materials for outreach tasks
	Observe health and safety precautions
	Collect Specimen for Laboratory Tests
	Maintain Health Information Management System
	Perform Routine Parasitological, Haematological, Chemistry,
	Microbiological and immunological tests.

1.5.2. Employment areas for the successful participant

- 1. Human Health Sector at Health Centres and hospitals
- 2. Animal Health Sector at Veterinary laboratories
- 3. Education sector e.g. at training institution
- 4. Manufacturing Industries e.g. food processing
- 5. Security institutions e.g. police for forensic diagnoses
- 6. Research Laboratories

1.6. Training Modules, Durations and Target Group

There are four Modules in the microbiology Laboratory techniques and practices

curriculum as depicted in table 1 below:

Courses	Duration	Target audience		
1:Basic Microbiology Laboratory	10 days	Laboratory Assistants, Technicians,		
Techniques	-	Technologists and Scientists.		
_				
2:Advanced Microbiology	10 days	Laboratory Technicians,		
Laboratory techniques and		Technologists, Scientists and		
Practices		Pathologists.		
3: Advanced Microbiology -	5 days	Laboratory Technicians,		
Molecular and Immunology		Technologists, Scientists and		
techniques		Pathologists		

1.7. Curriculum development process

The process for the development of this curriculum was participatory involving participants from MoH, UNHLS/CPHL, NCDC, stakeholders from academia, research and other key implementing partners.

The development was based on core microbiology laboratory competencies, skills, abilities, and knowledge needed to effectively detect infectious disease pathogens in a timely manner.

1.8. Training approach

Training Preparation: The training team will work with UNHLS/CPHL, collaborating partners and stakeholders to identify trainees, agree on appropriate practical training facilities with good microbiology laboratory facilities and equipment for performing a variety of microbiology techniques, etc. A training planning checklist will be utilized to ensure adequate, efficient and timely delivery of the training in line with the established curriculum.

Training Implementation: The training will be implemented in three phases; didactic, practicum and onsite mentorship

<u>Assessment/evaluation of Learners:</u> Training evaluation tools are developed, validated and utilized to assess competence (knowledge, skills, and attitudes). Improvements will be made based on lessons learnt from each training module and will be used to improve the next training hence creating cycles of improvements. Pre-tests and post-tests will be used to assess knowledge gain and skills acquisition.

Training follow-up and support: The training program will have a process and guide for following up and supporting trainees. A follow up package will be designed to include but not limited to mentorship, supportive supervision and competence assessments.

1.9. Programme Delivery

This is an in-service training programme structured into specific competencies followed by on site mentorship and support supervision. The trainees shall do pre and post-test which upon successful passing with 80% pass mark (post – test) will lead to award of a certificate of attendance. On fulfilling the competence requirements during followup and support Supervision, a Certificate of Competence will be awarded. Those who will not attain the pass mark shall be given a chance to repeat when next due upon demonstration of self-funding. Non-governmental organization or individuals who wish to attend the course shall be allowed on condition of self-sponsorship.

1.10. Attendance of trainees

Trainees shall be selected from the health facilities with Microbiology laboratory infrastructure and these should be willing to voluntarily carry out microbiology testing. Selected personnel should be available to attend the entire training duration.

1.11. Entry requirements for training

The candidate must be a laboratory worker with basic training in Laboratory technology/Science from a recognized training institution at the following levels:

• Certificate, Diploma, Bachelor's degree, and Master's degree.

The candidate should also be registered with respective Professional Regulatory body.

1.12. Training assessment

Each course shall be assessed as follows: -

- Pretest: done for purpose of needs assessment to reveal prior knowledge and skills
- Coursework (progressive/continuous assessment): This contributes 40 marks to the overall performance score
- Post-test: This contributes 60 marks to the overall performance scores
- Onsite competence assessment: This will be a standalone assessment and contributes 100 marks.

1.13. Certification/Award

Certificate of attendance: A candidate should have attended 100% of the training course and scored at least 80% in progressive assessment and at least 60% in the post test. The awarding body will be MoH and MAAIF.

Certificate of competence: A candidate should have scored at least 80% of the competence assessment. The competence certificate will be valid for one year.

Renewal of the competence certificate will be upon competence test, which will be carried out on job once a year. When the candidate fails to meet the competence standards for the subsequent year, he/she will be reassessed after three months on implementation of corrective action.

2. Programme content

2.1. Course 01: Basic Microbiology Laboratory Techniques and Practices

Duration of Module: 80 hrs

Overview

The module aims at providing the learner with in depth knowledge in general microbiology as well as equipping them with competencies to process specimens for the diagnosis of bacterial, fungal, parasitic, viral diseases and immunological reactions.

Learning Outcome

By the end of this module, the trainees will be able to:

- Manage microbiological specimens
- Processes of specimens
- Operate and maintain equipment
- Select and manage reagent and supplies
- Prepare media, reagents and stains
- Isolate and identify bacteria
- Perform serological Diagnostic tests
- Apply disinfection and sterilization methods.

Competences

The trainees will;

- Observe safety precautions and Bioethics
- Perform disinfection and sterilization methods for infection control and prevention.
- Operate and maintain key Microbiology Equipment.
- Select and manage microbiology reagents and supplies
- Prepare media, reagents and stains for identification of microorganisms.
- Manage microbiological specimens
- Process microbiological specimens, interpret, report and timely dispatch results

- Perform antimicrobial susceptibility testing, interpret, report and timely dispatch results
- Perform inoculation and incubation techniques for culture and identification of microorganisms
- Perform antimicrobial Susceptibility testing techniques
- Carry out serological diagnostic tests.
- Observe the practices of laboratory waste management.

Summary of Sessions

No.	Sessions and contents	LH	PH
1.	Introduction to microbiology	2hr	
	Describe microbiology		
	• Discuss the historical perspective of		
	Microbiology		
	• Explain the benefits of microorganisms in health		
	Describe host pathogens and normal flora		
2.	Microbiology Laboratory biosafety	1 hrs	3 hrs
	• Discuss the transmission of infections	30	30min
	Conduct risk assessments	min	
	Observe safety practices in the microbiology		
	laboratory		
	Perform disinfection and sterilization procedures		
	Safely handle and disposal waste		
3.	Professional ethics in microbiology laboratory	30	1 hr
	practice	min	
	• Describe ethical issues related to microbiology		
	laboratory practice		
	• Explain the importance of professional ethics		
	Apply ethical conduct to microbiology		
-	laboratory practice		
4.	Operation and management of assorted	1hr	3hrs
	microbiology equipment		
	Autoclave, Incubators, Hot Air Oven, Microscope,		
	water Bain, Centrifuge, weigning Balance, vortex		
	hand Pafrigareter, Colony counter, Hot plate with		
	magnetic stirrer Bursen Burner Automated blood		
	culture systems		
	• Outline the steps involved acquiring and using a		
	new equipment		
	 Discuss operating principles of listed 		
	microbiology equipment		
	Properly Use care and maintain listed		
	microbiology equipment		
	Outline procedures for handling faulty and		
	obsolete equipment		
5.	Procurement and inventory management	1	1 hr
	• List essential reagents and supplies required for	hr	30 min
	performing the essential microbiology tests		
	• Forecast reagents and supplies needed based on		
	the number of tests performed during a specific		
	period		

17 | Page

No.	Sessions and contents	LH	PH
	• Describe the procurement processes		
	• Explain the use and importance of the stock		
	cards in maintaining an adequate inventory		
	• Explain storage and shelf life requirements of		
	essential microbiology reagents and supplies		
6.	Staining Techniques in Microbiology	2hrs	9hrs
	• Identify and discuss the different types of stains	30	
	• Explain principles of common staining	min	
	techniques		
	• Prepare stains, perform staining methods,		
	interpret, quality control and report results		
	• Appropriately handle, store and dispose		
-	examined slides	21	0
7.	Preperation of culture media	2hrs	6hrs
	Mueller Hinton Agar, ALD, SABOURAUD Dextrose		
	Agai (SDA), DCA, Stuart's medium, Chromogenic agai		
	- MRSA, CLED agai, Chocolate, MacColley agai, XLD Selenite F TCBS Alkaline Pentone Water		
	Candida Agar		
	• Classify and identify the different types of		
	common culture media and their use		
	• Prepare different culture and identification		
	media		
	• Conduct quality control checks on prepared		
	media		
	• Properly store and dispose prepared culture		
	Media		
8.	Collection, handling, transport and	1hrs	7 hrs
	receipt of microbiology specimens	30	30 min
	• Describe different types of specimen collection	min	
	containers.		
	 Identify specimens for microbiological 		
	examination		
	• Prepare specimen collection containers.		
	• Properly Collect different types of microbiology		
	specimens		
	Properly Label specimen		
	• Maintain and preserve laboratory specimen to		
	maintain integrity		
	• Properly Package specimens for safe		
	transportation		
	Process specimens for microbiological		
	examination		

No.	Sessions and contents	LH	PH
	• Explain the different storage conditions for microbiology specimens		
	 Appropriately receive microbiology specimen for 		
	testing		
9.	Microbial Culture Techniques	5hrs	14hrs
	• Describe the different inoculation methods.	40	30min
	• Describe the different incubation conditions such as Aerobic, Anaerobic, Carboxyphilic and Micro-aerophilic	min	
	• Conduct different inoculation and incubation methods		
	• Perform microbial culture techniques on commonly encountered specimen, QC, interpret and report results		
	• Autoclave and dispose used culture media		
10.	Microbial identification Techniques Catalase, TSI, Citrate, SIM, lysine, identification sugars, Coagulase, Novobiocin, Bacitracin, Optochin, Bile esculin, DNase, Urease, Oxidase, X&V Factors	1hr	3hrs
	 Explain principles underlying the listed identification tests Perform and interpret the listed identification tests Conduct quality control checks for the listed identification tests 		
11	Antimicrobial Susceptibility Testing Methods	1 hrs	6hrs
	 Discuss the different classes of antibiotics and their mode of action Describe the mechanisms of antimicrobial resistance Discuss the importance and limitations of commercial antimicrobial susceptibility test 	30mi n	UIIIS
	 systems Perform AST using the disk diffusion methods, QC checks, interpret and report results 		
12.	Antigen-antibody Assays	30hrs	3hrs
	Pregnancy test, Brucella Agglutination Test, Rheumatoid factor, CRP (Latex), VDRL, RPR, TPHA, ASOT, Salmonella IgG/IgM, CRAG, Toxoplasma IgG/IgM, H pylori and Leptospirosis.		

No.	Sessions and contents	LH	PH
	 Describe antigen-antibody tests and their application in microbiology laboratory investigations Perform listed antigen-antibody tests, quality control checks, interpret and report results 		
13.	Documentation of microbiology activities and	20	40
	procedures	min	min
	 Define documentation and its importance in microbiology laboratories Outline the key documents and records that need to be maintained Discuss the implication of poor documentation practices 		
	• Complete and maintain key laboratory tools		
	Total hours	20hrs	61hrs
KEY LH	= Lecture Hours; PH = Practical Hours	8	

Delivery Method:

- Brain storming
- Demonstration
- Discussions
- Mentorship
- Question/Answer

Assessment Methods/Tools

- Pre Tests.
- Course work.
- Post Tests.
- On-site Competence assessment

Resources:

- Specimens
- SOPs
- Quality Control materials

- Media, Reagents and Stains
- Microscopes
- Autoclave
- Incubator
- Slides
- Antisera
- ICT gadgets
- PPE
- Stationary

References

Actor, J. K. (2011). Elsevier's Integrated Review Immunology and Microbiology E-Book: With STUDENT CONSULT Online Access. Elsevier Health Sciences.
Lee, R. E. (2018). Phycology. Cambridge University Press.
Ukoli, F. M. (1984). Introduction to parasitology in tropical Africa. John Wiley and Sons Limited.

Tortora, G. J., Funke, B. R., Case, C. L., & Johnson, T. R. (2004). Microbiology: an introduction (Vol. 9). San Francisco, CA: Benjamin Cummings.

Baker, F. J., & Silverton, R. E. (2014). *Introduction to medical laboratory technology*. Butterworth-Heinemann.

Cheesbrough, M. (1987). Medical Laboratory Manual for Tropical Countries. Volume 1. *Medical Laboratory Manual for Tropical Countries. Volume 1*, (Ed. 2).

Mackie, T. J. (1996). Mackie & McCartney practical medical microbiology. Harcourt Health Sciences.

Winn, W. C. (2006). *Koneman's color atlas and textbook of diagnostic microbiology*. Lippincott williams & wilkins.

Thomas, C. G. A. (1998). Gram-negative bacilli. Medical microbiology, 6, 273-274.

2.2. Course 02: Advanced Microbiology Laboratory Techniques in bacteriology and mycology

Duration: 80 hrs

Overview

This module will build and strengthen the capacity of laboratory personnel to perform Isolation and identification of microbial, antimicrobial susceptibility Testing of microbial pathogens, and AMR surveillance.

Learning Outcome

By the end of this module, the trainees will be able to Isolate, Identify microbial pathogens and carry out antimicrobial susceptibility testing for patient management and generate data for AMR surveillance

Competences

The trainee will,

Carryout Isolation techniques for microbial pathogens

- Isolate microbial pathogens
- Identify microbial pathogens
- Set up antimicrobial susceptibility Testing of microbial pathogens
- Conduct AMR surveillance.

Summary of Sessions

No.	Sessions	LCH	PCH
1	Isolation of microbial pathogens	4hrs	18hrs
	• Explain principles of media use and		
	growth/nutritional requirements of microorganisms		
	• Describe colony characteristics of different		
	microorganisms		
	Practice inoculation of media		
	• Carry out incubation of inoculated media		
	• Practice plate reading.		
	• Carry out purity subculture.		
2	Identification of microbial pathogens	4hrs	15hrs

No.	Sessions	LCH	PCH
	Selection of identification tests		
	• Set identification tests		
	• Read results of the tests performed.		
	• Quality control measures.		
	• Interpretation of results.		
	• Reporting results.		
3	Antimicrobial susceptibility Testing	3hrs	20hrs
	Classification of antibiotics		
	• Demonstrate the mode of action of antibiotics		
	• Illustrate mechanisms of resistance to antibiotics		
	• Selection of antibiotics		
	• Demonstrate methods of performing AST (Disc		
	diffusion, Agar well diffusion, Broth dilution, E-test,		
	automation)		
	Carry out Quality control		
4	Conduct AMR surveillance.	3hrs	13hrs
	• Enhance awareness and understanding of		
	antimicrobial resistance		
	 Strengthen awareness on National laboratory 		
	surveillance system for antimicrobial resistance		
	• Equip participants with skill or knowledge in/on;		
	i) Establishing laboratory-based surveillance		
	system for AMR		
	1) Identifying Priority pathogens (GLASS)		
	111) GLASS specimen and antibiotics		
	iv) Data management and information sharing		
	v) Monitoring and evaluation AIVIR lab-based		
	Total hre	14hrs	66hrs
KEV		1113	00113
LCH	= Lecture Hours; PCH = Practical Hours		

Delivery methods

- Group discussions through activities, scenarios and case studies
- Brain storming
- Tutorials
- Demonstration and return demonstration

Assessment methods

- Pre Tests.
- Course work.
- Post Tests.
- On-site Competence assessment

Resources:

- Specimens
- SOPs
- Sensitivity discs
- Inoculation loops
- Incubators
- Automatic culture equipment
- Gas burners
- Quality Control materials
- Media, Reagents and Stains
- Microscopes
- Autoclave
- Slides
- Waterbaths
- Antisera
- Stationery
- Safety gears

References

Baker, F. J., & Silverton, R. E. (2014). *Introduction to medical laboratory technology*. Butterworth-Heinemann.

Monica Chessbrough (2018). *District laboratory practice in tropical countries part 2* (2 Ed).

Winn, W. C. (2006). *Koneman's color atlas and textbook of diagnostic microbiology*. Lippincott williams & wilkins.

Ministry of health (2018). Uganda One Health Strategic Plan 2018-2022.

Ministry of health (2010). *Uganda National Health Laboratory Services Strategic Plan* (2010-2015).

WHO (2015). Global antimicrobial resistance surveillance system (GLASS).

Clinical laboratory standard institute (2018) M100, (27th Ed)

Ministry of health (2012) *National Technical Guidelines for Integrated Disease Surveillance and Response*

Winn, W. C. (2006). *Koneman's color atlas and textbook of diagnostic microbiology*. Lippincott williams & wilkins.

Baker, F. J., & Silverton, R. E. (2014). *Introduction to medical laboratory technology*. Butterworth-Heinemann.

Erick Nordberg (2007) Communicable diseases (4Ed), ISBN 978-874-88-7.

2.3. Module 03: Advanced Microbiology laboratory techniques in Molecular biology and Immunology

Duration: 40 hrs

Overview:

This course describes the principles of immunology and Molecular Biology and how these are exploited for the treatment, diagnosis and/or control of common infections in the tropics. The laboratory personnel will acquire knowledge skills and attitudes in on technology, laboratory theory and practical approaches prerequisite for the performance of common immunological/molecular genetics methods to the pathogenesis and diagnosis of infectious diseases.

Learning outcome

The trainee will acquire knowledge and skills in Molecular biology and Immunology for application of molecular genetics in the diagnosis and control of infectious diseases.

Competences

The trainee will:

- Describe the scope of molecular biology and immunology in the view of diagnostics and disease control
- Carry out specimen collection, transportation, processing and storage in the view of molecular diagnostics and diagnostic immunology
- Perform immunological and molecular diagnostic tests for diagnosis the common microbial diseases
- Describe the major clinical/medical uses of molecular diagnostic techniques
- Classify the various commercial molecular diagnostic techniques
- Explain clinical applications of molecular diagnostic techniques
- Detect emerging infectious diseases
- Discuss genetic methods currently used in predicting drug resistance, transmission patterns, and evolutionary trends in infectious diseases of public health importance
- Design immunology and molecular diagnostic laboratories for standard workflow

Summary of Sessions:

Session	Competency	LCH	PCH	
		(Hrs.)	(Hrs.)	
1	Introduction to Molecular Diagnostics (DNA	3hrs	5hrs	
	Extraction, Conventional PCR, Real time PCR)			
	• Discuss definitions, principle and application			
	Practice DNA / RNA diagnostics methods			
2	Specimen Handling; Collection, Transportation,	3hrs	5hrs	
	Processing and storage			
	• Describe animal and human clinical specimens.			
	• Describe environmental specimens such as food,			
	water, and fomites.			
	• Practice proper methods of human / animal specimen			
	collection and transportation			
3	Molecular Mechanisms of Microbial drug resistance	3hrs	5hrs	
	• Demonstrate Genotypic mechanisms of drug			
	resistance (ESBL, MSRA, CPE's, VRE's)			
4	Molecular epidemiology:	3hrs	5hrs	
	• Facilitate the ability of scientists to conduct			
	etiological research.			
	• Increase knowledge about determinants of disease.			
	• Contribute to development of approaches for disease			
	prevention.			
5	Diagnostic immunology	3hrs	5hrs	
	 Discuss the principles of immunology 			
	Carry out Immunological diagnostic methods			
	• Discuss the application of diagnostic immunology			
	(Immuno-assays)			
	Demonstrate equipment use and maintenance			
	Total hrs	15hrs	25hrs	
KEY				
LCH = Lecture Hours; PCH = Practical Hours				

Delivery methods:

- Tutorial
- Modified lectures
- Brain storming
- Group discussions
- Practical
- Demonstrations

Assessment methods

- Pre Tests.
- Course work.
- Post Tests.
- On-site Competence assessment

Resources

Specialised laboratory SOPs Specimens Equipment QC materials PPE Biohazard bags Reagents

Reference:

McNerney, R. (2003). Molecular Diagnostics: A Training and Study Guide. Gregory J. Tsongalis and William B. Coleman. Washington, DC: AACC Press, 2002, 374 pp., \$71.00 (\$57.00 AACC members), softcover. ISBN 1-890883-76-X. *Clinical chemistry*, *49*(2), 348-348.

Murakami, K., & Minamide, W. (1993). Diagnostic molecular microbiology: principles and applications. *Edited by David H. Persing, Thomas F. Smith, Fred C. Tenover and Thomas J white*.

Garcia, E., Ali, A., & Choudhry, S. (2013). The American Society for Clinical Pathology's 2012 vacancy survey of clinical laboratories in the United States. *Laboratory Medicine*, 44(1), e1-e18.

World Health Organization. (2000). *Guidelines for the collection of clinical specimens during field investigation of outbreaks* (No. WHO/CDS/CSR/EDC/2000.4). Geneva: World Health Organization.

CDC. Guidelines for specimen collection. <u>http://www.cdc.gov/foodborneoutbreaks</u> / guide_sc.htm.

Miller, J. M. (1999). A guide to specimen management in clinical microbiology. ASM press.

Dock, B. (2005). Improving the accuracy of specimen labeling. *Clinical Laboratory Science*, *18*(4). Summers, A. O. (2002). Generally overlooked fundamentals of bacterial genetics and ecology. *Clinical Infectious Diseases*, *34*(Supplement_3), S85-S92.

Speer, B. S., Shoemaker, N. B., & Salyers, A. A. (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. *Clinical microbiology reviews*, *5*(4), 387-399. Beović, B. (2006). The issue of antimicrobial resistance in human medicine. *International journal of food microbiology*, *112*(3), 280-287.

Silbergeld, E. K., Graham, J., & Price, L. B. (2008). Industrial food animal production, antimicrobial resistance, and human health. *Annu. Rev. Public Health*, *29*, 151-169.

American association for cancer research (2008). "What is Molecular Epidemiology?" Retrieved 2019-08-20

Foxman, B., & Riley, L. (2001). Molecular epidemiology: focus on infection. *American journal of epidemiology*, 153(12), 1135-1141.

Ministry of health (2012) National Technical Guidelines for Integrated Disease

Surveillance and Response.

Lutz, C. T. (1990). Catherine Sheehan Clinical Immunology Principles and Laboratory DiagnosisJ. B. Lippincott Company; 1990376 pages ISBN: O-397508-09-5. *Infection Control & Hospital Epidemiology*, *11*(10), 550-550.

Allaby, R. G., Fuller, D. Q., & Brown, T. A. (2008). The genetic expectations of a protracted model for the origins of domesticated crops. *Proceedings of the National Academy of Sciences*, *105*(37), 13982-13986.

Karp, G. (2009). Cell and molecular biology: concepts and experiments. John Wiley & Sons.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology 4th edition. *National Center for Biotechnology Information, Bookshelf*.

Alberts, B., Bray, D., Hopkin, K., Johnson, A. D., Lewis, J., Raff, M., ... & Walter, P. (2013). *Essential cell biology*. Garland Science.

Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. (2000). Molecular cell biology 4th edition. *National Center for Biotechnology Information, Bookshelf*.